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Quasiclassical molecular-dynamics simulations of the electron gas: Dynamic properties
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Results of quasiclassical molecular-dynamics simulations of the quantum electron gas are reported. Quan-
tum effects corresponding to the Pauli and the Heisenberg principle are modeled by an effective momentum-
dependent Hamiltonian. The velocity autocorrelation functions and the dynamic structure factors have been
computed. A comparison with theoretical predictions was perforfr&tD63-651X97)09610-4
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I. INTRODUCTION sufficient high temperatuyehe random phase approximation
(RPA) [1,2] gives good results in calculating the dielectric
A gas of interacting electrons imbedded in a uniformfunction because the kinetic energy is dominant.
positive background is a basic theoretical model. Degeneracy On the contrary, for electron densities corresponding to
(i.e., the influence of the Fermi statisticand couplingthe  the conduction band density in real metals the average ki-
role of interactions due to Coulomb forgeare important netic and potential energies of the electrons are of the same
features of the electron plasma. The electron gas is charaorder of magnitude, and the plasma is so to say moderately
terized by two parameters—the densityand the tempera- coupled (y~1). The microscopic dynamics of electrons in
ture T (in energy units The dimensionless parameter such plasmas are dominated by collisions and the noncolli-
6=T/Eg, where Er=(#%%/2m)(37°n)?? is the Fermi en- sional RPA becomes inapplicable. Exchange and correlation
ergy, describes the degeneracy of the electron system. Thi@rrections to the RPA cannot be calculated exactly, but a
coupling constant of the electron plasma can be defined asumber of approximate expressions of the dielectric function
the ratio of the average Coulomb energy to the average kihave been suggestéd].
netic energy, In order to check the validity of the different approaches
microscopic simulations of the electron gas are of great in-

3e¥a €? terest. Classical simulations of the one component plasma
YT 2 ewn  aTer’ (1) were performed by Hansest al. [4].
The aim of this paper is to report the results of a series of
where quasiclassical molecular-dynamics simulations on the dy-
namic properties of the electron gas. The thermodynamic
Ter= 0%°TFa(u/T) (2)  properties(mean energyof the electron gas were investi-

_ ) ) o gated in a previous papg5].
is the effective temperature corresponding to the kinetic en-

ergy of the Fermi gagy is the chemical potential of the ideal
electron gasa= (3/4mwn)*?, andF, is the Fermi integral. Il. MODEL
For a strongly degenerate electron g#s<(l) the cou-

. X In order to treat the quantum electron gas by quasiclassi-
pling constant depends only on the density, d g yd

cal simulations we make use of effective pair potentials.

e2/a Purely space-dependent effective potentials can be derived
y4=-—=1.3575, (3)  from the quantum-mechanical Slater si#n7]. At short dis-
= tances these potentials differ from the bare Coulomb poten-

tial and remain finite. On the basis of such potentials Norman
whererg=alag is the Wigner-Seitz radius of the electron and Valuev[8] and Hansen and McDonal®] performed

system in units of the Bohr radius. molecular-dynamics simulations of an electron-proton
The coupling constant for an electron gas obeying classiplasma.
cal statistics ¢>1) is Another way to include quantum diffraction effedi.,

the Heisenberg principlento the dynamics is to blow up the
phase space by introducing additional “quantum’ degrees of
freedom. This is done in the wave-packet dynamics devel-
oped to describe nuclear collisioh$0—13. However, this
Important information on the properties of the electronmethod leads to difficulties in describing thermal equilibrium
gas can be obtained from the knowledge of the dielectriproperties of many-particle systerffsA].
function and the dynamic structure factor. The plasma dis- We use therefore in our calculations the ordinary
persion relation, static correlation functions, and thermody6N-dimensional phase space, the patrticles interacting by ef-
namic potentials can all be obtained from these functions. fective pair potentials. However, a pseudopotential depend-
For a weakly coupled plasmay{1, i.e., for very high ing only on the space coordinates leads necessarily to the
electron densities or vice versa at very small densities antlaxwell momentum distribution. To model the momentum

eZ

yo=T= . @
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FIG. 1. Velocity autocorrelation function fat=50 at different FIG. 2. Comparison of the MD loss functidR(q,w) vs fre-

I' (curve 1:I'=100, curve 2I'=1). quencyw/w, with the corresponding loss function from the RPA

o ] __ for different wave vectorg| atI'=1 and§=1.
distribution of an electron gas governed by Fermi statistics

we include in our simulations momentum-dependent interac- The simulations based on the Hamiltonian, %), with

tion terms. We thus follow a line developed by a series ofthe parameters defined by E@) result in a mean energy
authors such as, e.g., Wilets and Kirschbaum, and Dorsproved to be in good agreement with quantum Monte Carlo
et al.[15-18. simulations and with Padapproximationg5].

In our simulations we substitute the quantum dynamics of That is the reason why we expand our considerations to
the electron system by a phase space dynamics of Hamiltoie investigation of the dynamic properties of the electron
type with effective quasiclassical Hamiltonigi gas within the developed approach.

Nz N - N ‘b In restricting our calculations to a simple Hamiltonian
_N M Fij Pij o ( Mii Pij given by Eq.(5) we make use of the fact that the collective
H _;1 2m * .2<, Vp( ro' Po * 2 € F( o ’po)' ®) dynamics of the electron system are dictated primarily by the
long-range character of the Coulomb potential and are
Here the first term is the ordinarglassical kinetic energy  widely unaffected by the simplifications in the short-range
of the electrons. The second contribution, the Pauli potentiabart of the effective potentials made in E¢8) and (7).
was chosen in a form suggested by Doesal. [15],

i<j

A2 Ill. DYNAMIC PROPERTIES
Vp(p:r)zvoe ’ (6)
Let
where A?=p?/p3+r?/r3 is the effective phase-space dis- "
tance of two particles with relative momentupand dis- - . -
tancer. p(kat):_El exn:lk'ri(t)] (10)
=
The last term in the effective Hamiltonian is the Coulomb
interaction averaged with respect to the two-particle Gausshe the Fourier component of the time-dependent microscopic

ian wave packets and is expressed by electron density. The density-density dynamic structure fac-
tor is defined as the Fourier transform of the correlation func-
erf(r/\/fro) tion,
Frp)=——F—": ()
. 1 (= . . .

The Gaussian wave packet transforms the Heisenberg uncer- S(k,w) = 27N we'“’t(p(k,t)p(—k,O))dt. (12)
tainty condition into an identity, §p)(8q)=%/2, which
leads to

A closely related quality is the dielectric functi@rﬁlz,w)
foPo=1. ) of the electron system. It describes the linear response of the
oro plasma to an external electric field and is connected to the
The other two parameters in the Hamiltonian E§) are  dynamic structure factor via the fluctuation-dissipation theo-
chosen to describe the correlation function and the momer€m (FDT),
tum distribution of a free Fermi gas. An appropriate choice is

(5] C e filme (K, w) 1
. Sk rgmi-on-gre1
Vo=Te  PG=MTer, 6= 17— (9 where (k) =4me?/k2, 8= 1T .

The imaginary part of the dielectric function is antisym-
with T from Eq. (2). metric with respect to the frequency. Note that from B®)
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FIG. 4. The MD loss functiorR(q,w) vs frequencyw/w, for
different wave vectorsg atI'=100 and6=50.

it follows that the dynamic structure factor does not possess

symmetry, but satisfies the relation

S(k,— w)=e P"S(K,w). (13
The dynamic structure factor defined by El) and(10) is
directly measurable in the molecular-dynami{t4D) simu-

lations if one identifies the Heisenberg operafqn) with
the position of thath particle in our simulations.
However, the thus obtained quantifwe denote it by

R(IZ,w)] possesses symmetry. It corresponds therefore to
classical FDT,

R(K,w)=[n7¢(K)Bw] ime LK, o). (14)
From Eq.(14) one concludes tth(IZ,w) can be regarded as
a normalized loss function.

The quantum-statistical dynamic structure factor obeyin
the relation Eq(13) has to be calculated as

. hBw

S(k,w)= 1—eX[X—,8ﬁw)R(k’w)'

(19

In what follows we will regard the normalized loss func-

described by the dynamic structure factor the loss func-
tion). R(q,w) (q=ka) is plotted for twoq values, al’'=1

for different /=1 (moderate degeneratand =50 (classi-
cal) and for I'=100 at #=50 (strongly coupled, classical
electron gas(Figs. 2—4. The results of the simulations are
compared with theoretical predictions from the RPA. At
moderate coupling constants € 1) the plasmon peak of the
loss function is less than that predicted by the RPA and
slightly shifted to the lefi{Figs. 2 and R In both cases the
Blasmon peak can be observed only for the smatjesilue.
The change of in the range from 50 to 1 has only a small
influence on the result§=ig. 5).

In the strong-coupling regimE =100 the observed plas-
mon peak at the smallesf value is extremely sharp and
centered close tap (Fig. 4). A well-defined collective plas-
mon mode has been developed. Ay aalue 3 times larger

%he plasmon peak widens, but is still present and shifted to

the left by about 10%. At still largeq values the plasmon
peak vanishes.

This behavior is in striking contradiction to the RPA pre-
dictions where no plasmon peak can be observed due to the
strong Landau damping. However, the RPA is inapplicable

tion. Note that in the classical case the loss function and the

dynamic structure factor coincide.

In our molecular-dynamics simulations we used the algo- o

rithm of Verlet[19] to integrate numerically the equations of

motions obtained from the effective Hamiltonian of a system
of 256 electrons. The typical length of the MD runs was

about 1@@);1 (wp being the plasma frequency

The equilibrization phase was replaced by a Monte Carlo

simulation using the algorithm of Metropolig20]. The

forces were calculated by an Ewald method in order to ac-

count for the long range of the Coulomb interactii&t].

The motion of the electrons can be studied by calculating the ' 0

velocity autocorrelation functiofACF) (v (t+ 7)v(t));.
We seg(Fig. 1) that forI'=1 the velocity autocorrelation
falls monotonically to zero, whereas fbr= 100 the decay of
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the velocity ACF is characterized by the appearance of os-
cillations with a frequency close to the plasma frequency.
That means that the motion of a single electron is coupled to FIG. 5. The MD loss functiorR(q,w) vs frequencyw/w,, for
the collective density fluctuations. The collective motion iswave vectorg=0.619 at fixed' =1 and differents.
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in the strong-coupling regime, where the potential energy is The frequencies);(k) and w,(k) are defined as respec-
dominant. On the contrary, our MD simulations for the Cas&; e ratios of the momente (IZ)'
n(K):

of weak degeneracy are in a good agreement with corre-

sponding MD simulations of Hanseet al. for the classical 2_ —wll-—e YKk0OT1 2 24

one-component plasnid]. ©01=Co/Co=wpl1-s (kO] @49
We conclude therefore that our model yields reasonable 2_ -2

results in describing the dynamic properties of the electron ©2=CalCo= wpl 1K) +L(K)] (25

gas at least at weak and moderate degeneracy. There is no phenomenological basis for the choice of a
uniqueQ(lZ,z), which would provide an exact expression for
e YK ).

Important characteristics are the frequency moments of If one is interested in the investigation of the dispersion
the imaginary part of the inverse dielectric functidbF). relation only, it suffices to negle@(lz,w), since the damp-

IV. ANALYSIS OF THE RESULTS

They are defined by ing is small in strongly coupled plasmas. If one puts

1 e Q(R,w)=0 one obtains the expression of the inverse dielec-

Ck=—=| o' Ume Yk ow)dw, »=01,.... tric function obtained within the quasilocalized charge
TJ e approach of Kalmarh23]. The disadvantage of this choice

(16)  of Q is that damping is not taken into account. As a result

: - ; . the shape of the dynamic structure factor within this ap-
Due to the antisymmetry of the imaginary part of the in roach is reduced to a simpk function peak at the fre-

verse DF all even frequency moments vanish, whereas the

odd frequency moments are purely expressable in terms &uencywz(k). Thus only the peak position but not the shape

the static properties of the electron gas. After a straightfor—Of the dynamic structure factor can be described appropri-

ward calculation one obtains ately. . . N
The easiest way to go beyond the simple approximation
Co(k)=[1-e"*(k,0)], (177 Q=0 is to put the functiorQ(k,») equal to its static value:
Co(k) = w3, (18) Q(k,2)=Q(k,0=ih(k), (26)
Ca(k) = wp[ 1+ K(K) +L(K)], (199 whereh(k) is connected to the static value of the dynamic
structure factoiS(k,0):
where
_ 24 BNk 2,4p,-2 k? Co(k)
K(k)=3(k/kp)“+ Va/18(ATK/\L) + N7k kg  (20) h(k)= 7?[(‘02/“’1)2_1]- (27)
k2 S(k,0)

is the kinetic contribution involving quantum correct- ) _
ions, k3=4mne?B, Ny=(ABI2m)~ Y2 \ =3/2e?B, and From the Nevanlinna formula the loss function reads

wi=4mne?/m. The contribution oh?(K)o?
> > 1
R(k,w)=S(k,0) = .
1 (=, [0*(w®~ 5)?+h?(K)(0®~ w])?]
L(k)=——~[ pTS(p)—1]f(p.k)dp (21) (28)
3m7“nJo
takes int t the electroni lati Equation(28) interpolates between the low-frequency be-
akes into account the electronic correlations, havior [described byCy(k) and S(k,0)] and the high-
5 3p? 3(ki—p?)? K frequency behavior{given by the momentsC,(k) and
f(p,k)==— i+ ( P n P ) (220 Ca(K)] of the loss function. Though there is no direct justi-
8 gk? 16pk® p—k fication that the above interpolation formula describes the

loss function in an appropriate manner also for intermediate

A quantitative analysis of the results of the MD simula- frequencies’ we expect that qug) reproduces the whole
tions should be based on the frequency moments defined &hape of the loss function at least qualitatively.
Egs.(17)—(19). The analysis of the MD calculations is based on &®).

The Nevanlinna formula of the classical theory of mo-To calculate the frequencief(q), wi(q), and w.(q)
ments constructs a dielectric function that satisfies the knowoq:ka) the static structure factors from hypernetted-chain
sum rulesC, to C, [22]: (HNC) approximation equations were used. Since the latter

2 are classical equations we have restricted our comparison of
wp(z+Q) (23) the sum rule approach to the MD calculations to the case of
2(2%— w§)+Q(zz— wi) ' weak degeneracyln this case the dynamic structure factor
R S(q,w) coincides with the loss functioR(q, w).]

Here Q=Q(k,2) is an arbitrary function being analytic in  The results of the comparison of the loss function calcu-
the upper complex half-plane 0 (w=Rez) and pos- |ated from the MD simulations and that obtained from the
sessing there a positive imaginary part, it also should satisfiyevanlinna formula are shown for different vectors at

the limiting condition[q(k,z)/z]—0 , asz—« within the T'=100 andI'=1, respectively. The agreement between
sectord<arg@@)<w—9 (0<9I<m). theory and simulations is quite good. The theoretical curves

e YKkz)=1+
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FIG. 6. Comparison of the MD loss functioR(q,w) vs fre-

quency w/ w, with the corresponding loss function from the sum
rules approachEq. (29)] at I'=100 and =50 for wave vector

q=1.856.

FIG. 8. Same as Fig. 6; d&t=1 and #=50 for wave vector
q=0.619.

At moderate couplingI{=1) the dispersion is positive,

reproduce rather well the variation of the shape of the dyihe plasmon peak is observed only for the smallest wave
namic structure factor and describe the plasmon peak po jumberq=0.618. As can be seen from Figs. 2 and 3 this

tion in a good manner. However, the agreement of the hEIgrEehavior is qualitatively confirmed by the RPA calculations,

of the peaks is less satisfactaifyigs. 6—8. We believe that

one of the reasons for this disagreement between the resu
of simulations with theoretical predictions might be the nor-
malization t0S(qg,0), which is a value rather poorly mea-

Eowever, quantitative deviations from the RPA predictions
3 a slight shift of the plasmon peak to the left were ob-
served.

In the strong-coupling regime the shape of the loss func-

sured in the simulations due to the poor statistics at long; changes qualitativel§Fig. 4. At I'=100 the dispersion

times.

The results of quasiclassical molecular-dynamics simula®
tions of the electron gas using momentum-dependent effec-
tive potentials have been reported. The quasiclassical M
computations were performed for different coupling con-.
stants =1 andI"=100) at various degeneracy£1 and
0=50). The effective potential was chosen to describe bot
the Pauli principle and the Heisenberg uncertainty. The
changing of the coupling constait leads to qualitative
changes in the dispersion curve of the density fluctuations.

4.0

3.0

R(q.w) / R(a.0)

1.0

0.0

FIG. 7. Same as Fig. 6; at=100 andd=50 for wave vector

q=3.094.

20 -

V. CONCLUSIONS

is negative, a very sharp plasmon peak is observed for the
smallest wave number, with increasingthe peak widens
but is present up t@=3.1. At still greaterg the plasmon
peak vanishes.

Thus, the collective behavior of the electron gas at weak
nd moderate coupling can be understood as oscillations of
e total charge in the Debye sphere, the individual particles
in the sphere moving almost independently. This is the re-
ime of the collisionless plasma described by the RPA. On
he other hand, one can interpret the collective motion in the
strong-coupling regime as solidlike collective oscillations
when the motion of each of the particles is coupled to the
collective oscillations. This is also confirmed by the shape of
the velocity autocorrelation functiofiig. 1).

In contrast to the qualitative change of the shape of the
loss function by varying the coupling constant the variation
of # in the range from#=50 to #=1 has only a small
influence on the behavior of the loss functigfig. 5. How-
ever, we expect a greater influence at higher degrees of de-
generacy.

As demonstrated in Figs. 6—8 the above features are
rather well reproduced by a simple sum rule analysis. Fi-
nally, we note that our quantum molecular-dynamic simula-
tions describe the dynamic properties of the electron gas only
approximately.

o8 "quantum" MD results
sum rules approach
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