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Quasiclassical molecular-dynamics simulations of the electron gas: Dynamic properties

J. Ortner, F. Schautz, and W. Ebeling
Institut für Physik, Humboldt Universita¨t zu Berlin, Invalidenstrasse 110, D-10115 Berlin

~Received 28 May 1997!

Results of quasiclassical molecular-dynamics simulations of the quantum electron gas are reported. Quan-
tum effects corresponding to the Pauli and the Heisenberg principle are modeled by an effective momentum-
dependent Hamiltonian. The velocity autocorrelation functions and the dynamic structure factors have been
computed. A comparison with theoretical predictions was performed.@S1063-651X~97!09610-4#

PACS number~s!: 52.65.2y, 71.45.Gm, 03.65.Sq, 05.30.Fk
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I. INTRODUCTION

A gas of interacting electrons imbedded in a unifo
positive background is a basic theoretical model. Degene
~i.e., the influence of the Fermi statistics! and coupling~the
role of interactions due to Coulomb forces! are important
features of the electron plasma. The electron gas is cha
terized by two parameters—the densityn and the tempera
ture T ~in energy units!. The dimensionless paramet
u5T/EF , where EF5(\2/2m)(3p2n)2/3 is the Fermi en-
ergy, describes the degeneracy of the electron system.
coupling constant of the electron plasma can be define
the ratio of the average Coulomb energy to the average
netic energy,

g5
3

2

e2/a

«kin
5

e2

aTeff
, ~1!

where

Teff5u3/2TF3/2~m/T! ~2!

is the effective temperature corresponding to the kinetic
ergy of the Fermi gas,m is the chemical potential of the idea
electron gas,a5(3/4pn)1/3, andF3/2 is the Fermi integral.

For a strongly degenerate electron gas (u!1) the cou-
pling constant depends only on the density,

gd5
e2/a
2
5 EF

51.3575r S , ~3!

where r S5a/aB is the Wigner-Seitz radius of the electro
system in units of the Bohr radius.

The coupling constant for an electron gas obeying cla
cal statistics (u@1) is

gcl[G5
e2

aT
. ~4!

Important information on the properties of the electr
gas can be obtained from the knowledge of the dielec
function and the dynamic structure factor. The plasma d
persion relation, static correlation functions, and thermo
namic potentials can all be obtained from these function

For a weakly coupled plasma (g!1, i.e., for very high
electron densities or vice versa at very small densities
561063-651X/97/56~4!/4665~6!/$10.00
cy

c-

he
as
i-

-

i-

ic
-
-

d

sufficient high temperature! the random phase approximatio
~RPA! @1,2# gives good results in calculating the dielectr
function because the kinetic energy is dominant.

On the contrary, for electron densities corresponding
the conduction band density in real metals the average
netic and potential energies of the electrons are of the s
order of magnitude, and the plasma is so to say modera
coupled (g;1). The microscopic dynamics of electrons
such plasmas are dominated by collisions and the nonc
sional RPA becomes inapplicable. Exchange and correla
corrections to the RPA cannot be calculated exactly, bu
number of approximate expressions of the dielectric funct
have been suggested@3#.

In order to check the validity of the different approach
microscopic simulations of the electron gas are of great
terest. Classical simulations of the one component plas
were performed by Hansenet al. @4#.

The aim of this paper is to report the results of a series
quasiclassical molecular-dynamics simulations on the
namic properties of the electron gas. The thermodyna
properties~mean energy! of the electron gas were invest
gated in a previous paper@5#.

II. MODEL

In order to treat the quantum electron gas by quasicla
cal simulations we make use of effective pair potentia
Purely space-dependent effective potentials can be der
from the quantum-mechanical Slater sum@6,7#. At short dis-
tances these potentials differ from the bare Coulomb po
tial and remain finite. On the basis of such potentials Norm
and Valuev@8# and Hansen and McDonald@9# performed
molecular-dynamics simulations of an electron-prot
plasma.

Another way to include quantum diffraction effects~i.e.,
the Heisenberg principle! into the dynamics is to blow up the
phase space by introducing additional ‘‘quantum’’ degrees
freedom. This is done in the wave-packet dynamics dev
oped to describe nuclear collisions@10–13#. However, this
method leads to difficulties in describing thermal equilibriu
properties of many-particle systems@14#.

We use therefore in our calculations the ordina
6N-dimensional phase space, the particles interacting by
fective pair potentials. However, a pseudopotential depe
ing only on the space coordinates leads necessarily to
Maxwell momentum distribution. To model the momentu
4665 © 1997 The American Physical Society
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distribution of an electron gas governed by Fermi statis
we include in our simulations momentum-dependent inter
tion terms. We thus follow a line developed by a series
authors such as, e.g., Wilets and Kirschbaum, and Do
et al. @15–18#.

In our simulations we substitute the quantum dynamics
the electron system by a phase space dynamics of Ham
type with effective quasiclassical Hamiltonian@5#

H5(
i 51

N pi
2

2m
1(

i , j

N

VpS r i j

r 0
,
pi j

p0
D1(

i , j

N

e2FS r i j

r 0
,
pi j

p0
D . ~5!

Here the first term is the ordinary~classical! kinetic energy
of the electrons. The second contribution, the Pauli poten
was chosen in a form suggested by Dorsoet al. @15#,

Vp~p,r !5V0e2D2/2, ~6!

where D25p2/p0
21r 2/r 0

2 is the effective phase-space di
tance of two particles with relative momentump and dis-
tancer .

The last term in the effective Hamiltonian is the Coulom
interaction averaged with respect to the two-particle Gau
ian wave packets and is expressed by

F~r ,p!5
erf~r /A2r 0!

r
. ~7!

The Gaussian wave packet transforms the Heisenberg un
tainty condition into an identity, (dp)(dq)5\/2, which
leads to

r 0p05\. ~8!

The other two parameters in the Hamiltonian Eq.~5! are
chosen to describe the correlation function and the mom
tum distribution of a free Fermi gas. An appropriate choice
@5#

V05Teff , p0
25mTeff , r 0

25
\2

mTeff
, ~9!

with Teff from Eq. ~2!.

FIG. 1. Velocity autocorrelation function foru550 at different
G ~curve 1:G5100, curve 2:G51).
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The simulations based on the Hamiltonian, Eq.~5!, with
the parameters defined by Eq.~9! result in a mean energy
proved to be in good agreement with quantum Monte Ca
simulations and with Pade´ approximations@5#.

That is the reason why we expand our considerations
the investigation of the dynamic properties of the electr
gas within the developed approach.

In restricting our calculations to a simple Hamiltonia
given by Eq.~5! we make use of the fact that the collectiv
dynamics of the electron system are dictated primarily by
long-range character of the Coulomb potential and
widely unaffected by the simplifications in the short-ran
part of the effective potentials made in Eqs.~6! and ~7!.

III. DYNAMIC PROPERTIES

Let

r~kW ,t !5(
i 51

N

exp@ ikW•r i
W ~ t !# ~10!

be the Fourier component of the time-dependent microsco
electron density. The density-density dynamic structure f
tor is defined as the Fourier transform of the correlation fu
tion,

S~kW ,v!5
1

2pNE2`

`

eivt^r~kW ,t !r~2kW ,0!&dt. ~11!

A closely related quality is the dielectric function«(kW ,v)
of the electron system. It describes the linear response o
plasma to an external electric field and is connected to
dynamic structure factor via the fluctuation-dissipation the
rem ~FDT!,

S~kW ,v!5
\ Im«21~kW ,v!

npf~k!@12exp~2b\v!#
, ~12!

wheref(k)54pe2/k2,b51/T .
The imaginary part of the dielectric function is antisym

metric with respect to the frequency. Note that from Eq.~12!

FIG. 2. Comparison of the MD loss functionR(q,v) vs fre-
quencyv/vp with the corresponding loss function from the RP
for different wave vectorsq at G51 andu51.
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56 4667QUASICLASSICAL MOLECULAR-DYNAMICS . . .
it follows that the dynamic structure factor does not poss
symmetry, but satisfies the relation

S~kW ,2v!5e2b\vS~kW ,v!. ~13!

The dynamic structure factor defined by Eqs.~11! and~10! is
directly measurable in the molecular-dynamics~MD! simu-
lations if one identifies the Heisenberg operatorr i

W (t) with
the position of thei th particle in our simulations.

However, the thus obtained quantity@we denote it by
R(kW ,v)# possesses symmetry. It corresponds therefore
classical FDT,

R~kW ,v!5@npf~k!bv#21Im«21~kW ,v!. ~14!

From Eq.~14! one concludes thatR(kW ,v) can be regarded a
a normalized loss function.

The quantum-statistical dynamic structure factor obey
the relation Eq.~13! has to be calculated as

S~kW ,v!5
\bv

12exp~2b\v!
R~kW ,v!. ~15!

In what follows we will regard the normalized loss fun
tion. Note that in the classical case the loss function and
dynamic structure factor coincide.

In our molecular-dynamics simulations we used the al
rithm of Verlet @19# to integrate numerically the equations
motions obtained from the effective Hamiltonian of a syst
of 256 electrons. The typical length of the MD runs w
about 103vp

21 (vp being the plasma frequency!.
The equilibrization phase was replaced by a Monte Ca

simulation using the algorithm of Metropolis@20#. The
forces were calculated by an Ewald method in order to
count for the long range of the Coulomb interaction@21#.
The motion of the electrons can be studied by calculating
velocity autocorrelation function~ACF! ^v(t1t)v(t)& t .

We see~Fig. 1! that forG51 the velocity autocorrelation
falls monotonically to zero, whereas forG5100 the decay of
the velocity ACF is characterized by the appearance of
cillations with a frequency close to the plasma frequen
That means that the motion of a single electron is couple
the collective density fluctuations. The collective motion

FIG. 3. Same as Fig. 2, forG51 andu550.
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described by the dynamic structure factor~or the loss func-
tion!. R(q,v) (q5ka) is plotted for twoq values, atG51
for different u51 ~moderate degenerate! andu550 ~classi-
cal! and for G5100 at u550 ~strongly coupled, classica
electron gas! ~Figs. 2–4!. The results of the simulations ar
compared with theoretical predictions from the RPA.
moderate coupling constants (G51) the plasmon peak of the
loss function is less than that predicted by the RPA a
slightly shifted to the left~Figs. 2 and 3!. In both cases the
plasmon peak can be observed only for the smallestq value.
The change ofu in the range from 50 to 1 has only a sma
influence on the results~Fig. 5!.

In the strong-coupling regimeG5100 the observed plas
mon peak at the smallestq value is extremely sharp an
centered close tovP ~Fig. 4!. A well-defined collective plas-
mon mode has been developed. At aq value 3 times larger
the plasmon peak widens, but is still present and shifted
the left by about 10%. At still largerq values the plasmon
peak vanishes.

This behavior is in striking contradiction to the RPA pr
dictions where no plasmon peak can be observed due to
strong Landau damping. However, the RPA is inapplica

FIG. 4. The MD loss functionR(q,v) vs frequencyv/vp for
different wave vectorsq at G5100 andu550.

FIG. 5. The MD loss functionR(q,v) vs frequencyv/vp for
wave vectorq50.619 at fixedG51 and differentu.
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in the strong-coupling regime, where the potential energ
dominant. On the contrary, our MD simulations for the ca
of weak degeneracy are in a good agreement with co
sponding MD simulations of Hansenet al. for the classical
one-component plasma@4#.

We conclude therefore that our model yields reasona
results in describing the dynamic properties of the elect
gas at least at weak and moderate degeneracy.

IV. ANALYSIS OF THE RESULTS

Important characteristics are the frequency moments
the imaginary part of the inverse dielectric function~DF!.
They are defined by

Cn~kW !52
1

pE2`

`

vn21Im«21~kW ,v!dv, n50,1, . . . .

~16!

Due to the antisymmetry of the imaginary part of the
verse DF all even frequency moments vanish, whereas
odd frequency moments are purely expressable in term
the static properties of the electron gas. After a straight
ward calculation one obtains

C0~k!5@12«21~kW ,0!#, ~17!

C2~k!5vp
2 , ~18!

C4~k!5vp
4@11K~k!1L~k!#, ~19!

where

K~k!53~k/kD!21Ap/18~lT
3k2/lL!1lT

2k4kD
22 ~20!

is the kinetic contribution involving quantum correc
ions, kD

2 54pne2b, lT5(\b/2m)21/2, lL53/2e2b, and
vp

254pne2/m. The contribution

L~k!5
1

3p2n
E

0

`

p2@S~p!21# f ~p,k!dp ~21!

takes into account the electronic correlations,

f ~p,k!5
5

8
2

3p2

8k2
1

3~k22p2!2

16pk3
lnS p1k

p2kD . ~22!

A quantitative analysis of the results of the MD simul
tions should be based on the frequency moments define
Eqs.~17!–~19!.

The Nevanlinna formula of the classical theory of m
ments constructs a dielectric function that satisfies the kno
sum rulesC0 to C4 @22#:

«21~kW ,z!511
vp

2~z1Q!

z~z22v2
2!1Q~z22v1

2!
. ~23!

Here Q5Q(kW ,z) is an arbitrary function being analytic i
the upper complex half-plane Imz.0 (v5Rez) and pos-
sessing there a positive imaginary part, it also should sat
the limiting condition@q(kW ,z)/z#→0 , asz→` within the
sectorq,arg(z),p2q (0,q,p).
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The frequenciesv1(kW ) andv2(kW ) are defined as respec
tive ratios of the momentsCn(kW ):

v1
25C2 /C05vp

2@12«21~kW ,0!#21, ~24!

v2
25C4 /C25vp

2@11K~k!1L~k!#. ~25!

There is no phenomenological basis for the choice o
uniqueQ(kW ,z), which would provide an exact expression f
«21(kW ,v).

If one is interested in the investigation of the dispersi
relation only, it suffices to neglectQ(kW ,v), since the damp-
ing is small in strongly coupled plasmas. If one pu
Q(kW ,v)50 one obtains the expression of the inverse diel
tric function obtained within the quasilocalized char
approach of Kalman@23#. The disadvantage of this choic
of Q is that damping is not taken into account. As a res
the shape of the dynamic structure factor within this a
proach is reduced to a simpled function peak at the fre-
quencyv2(k). Thus only the peak position but not the sha
of the dynamic structure factor can be described appro
ately.

The easiest way to go beyond the simple approximat
Q50 is to put the functionQ(kW ,v) equal to its static value

Q~kW ,z!5Q~kW ,0!5 ih~kW !, ~26!

whereh(kW ) is connected to the static value of the dynam
structure factorS(kW ,0):

h~k!5
k2

kD
2

C0~k!

S~kW ,0!
@~v2 /v1!221#. ~27!

From the Nevanlinna formula the loss function reads

R~kW ,v!5S~kW ,0!
vh2~kW !v1

4

@v2~v22v2
2!21h2~kW !~v22v1

2!2#
.

~28!

Equation~28! interpolates between the low-frequency b
havior @described byC0(k) and S(k,0)# and the high-
frequency behavior@given by the momentsC2(k) and
C4(k)# of the loss function. Though there is no direct jus
fication that the above interpolation formula describes
loss function in an appropriate manner also for intermed
frequencies, we expect that Eq.~28! reproduces the whole
shape of the loss function at least qualitatively.

The analysis of the MD calculations is based on Eq.~28!.
To calculate the frequenciesh(q), v1(q), and v2(q)
(q5ka) the static structure factors from hypernetted-ch
~HNC! approximation equations were used. Since the la
are classical equations we have restricted our compariso
the sum rule approach to the MD calculations to the case
weak degeneracy.@In this case the dynamic structure fact
S(q,v) coincides with the loss functionR(q,v).#

The results of the comparison of the loss function cal
lated from the MD simulations and that obtained from t
Nevanlinna formula are shown for differentq vectors at
G5100 and G51, respectively. The agreement betwe
theory and simulations is quite good. The theoretical cur
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reproduce rather well the variation of the shape of the
namic structure factor and describe the plasmon peak p
tion in a good manner. However, the agreement of the he
of the peaks is less satisfactory~Figs. 6–8!. We believe that
one of the reasons for this disagreement between the re
of simulations with theoretical predictions might be the n
malization toS(q,0), which is a value rather poorly mea
sured in the simulations due to the poor statistics at lo
times.

V. CONCLUSIONS

The results of quasiclassical molecular-dynamics simu
tions of the electron gas using momentum-dependent ef
tive potentials have been reported. The quasiclassical
computations were performed for different coupling co
stants (G51 andG5100) at various degeneracy (u51 and
u550). The effective potential was chosen to describe b
the Pauli principle and the Heisenberg uncertainty. T
changing of the coupling constantG leads to qualitative
changes in the dispersion curve of the density fluctuation

FIG. 6. Comparison of the MD loss functionR(q,v) vs fre-
quencyv/vp with the corresponding loss function from the su
rules approach@Eq. ~29!# at G5100 andu550 for wave vector
q51.856.

FIG. 7. Same as Fig. 6; atG5100 andu550 for wave vector
q53.094.
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At moderate coupling (G51) the dispersion is positive,
the plasmon peak is observed only for the smallest wa
numberq50.618. As can be seen from Figs. 2 and 3 th
behavior is qualitatively confirmed by the RPA calculation
however, quantitative deviations from the RPA prediction
as a slight shift of the plasmon peak to the left were o
served.

In the strong-coupling regime the shape of the loss fun
tion changes qualitatively~Fig. 4!. At G5100 the dispersion
is negative, a very sharp plasmon peak is observed for
smallest wave number, with increasingq the peak widens
but is present up toq53.1. At still greaterq the plasmon
peak vanishes.

Thus, the collective behavior of the electron gas at we
and moderate coupling can be understood as oscillations
the total charge in the Debye sphere, the individual particl
in the sphere moving almost independently. This is the r
gime of the collisionless plasma described by the RPA. O
the other hand, one can interpret the collective motion in t
strong-coupling regime as solidlike collective oscillation
when the motion of each of the particles is coupled to th
collective oscillations. This is also confirmed by the shape
the velocity autocorrelation function~Fig. 1!.

In contrast to the qualitative change of the shape of t
loss function by varying the coupling constant the variatio
of u in the range fromu550 to u51 has only a small
influence on the behavior of the loss function~Fig. 5!. How-
ever, we expect a greater influence at higher degrees of
generacy.

As demonstrated in Figs. 6–8 the above features a
rather well reproduced by a simple sum rule analysis. F
nally, we note that our quantum molecular-dynamic simul
tions describe the dynamic properties of the electron gas o
approximately.
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FIG. 8. Same as Fig. 6; atG51 and u550 for wave vector
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